
Predicting Keyhole Pore Formation in Laser Powder Bed Fusion
Using Deep Learning Models

Objective:
The objective of this project is to predict the formation of a pore in the keyholes of the
Laser Powder Bed Fusion (LPBF) Additive Manufacturing process. The prediction aims
to occur approximately 0.5 μs earlier than the pore formation. This advancement seeks to
improve the overall quality and reliability of the LPBF process.

Methodology:

To achieve the desired objective of predicting the formation of a pore approximately 0.5
μs earlier in the keyholes of the Laser Powder Bed Fusion (LPBF) Additive
Manufacturing process, numerous simulation images need to be collected to train a
deep-learning model. For these simulations, two alloys were chosen: Al-6061 alloy and
Ti-6Al-4V alloy. These materials were selected due to their prevalent use in additive
manufacturing and their distinct thermal and mechanical properties, which provide a
comprehensive dataset for training the model.

Once the simulation images are gathered, the initial aim is to use a Convolutional Neural
Network (CNN) architecture for training. The CNN will be evaluated for its accuracy in
predicting pore formation and the computational timing required for such predictions.
Accuracy and timing are crucial metrics, as they will determine the model's feasibility for
real-time application in the LPBF process.

For improved accuracy and computational efficiency, a Physics-Informed Neural
Network (PINN) will be employed. The PINN will incorporate a physics-based loss
function, leveraging the underlying physical principles of the LPBF process. This
approach is expected to enhance the model's predictive capabilities by integrating
domain-specific knowledge into the learning process.

The procedure can be divided into two parts:
1. Running Simulations of the LBPF Model in Ansys Fluent
2. Training CNN for prediction of pore formation in the keyhole
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Figure 1: Workflow for Predicting Keyhole Pore Formation in LPBF Using Deep Learning
Models

Part - I - Running Simulations of the LBPF Model in Ansys Fluent

The Laser Powder Bed Fusion (LPBF) simulation of Al-6061 alloy was successfully
conducted using Ansys Fluent software. The material properties used in the simulation
for Al-6061 are provided in Table 1. These properties include essential parameters such
as solid density, liquid density, solidus and liquidus temperatures, specific heat capacities,
thermal conductivities, latent heat of fusion, dynamic viscosity, thermal expansion
coefficient, surface tension, and the Marangoni coefficient.
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Custom User Defined Functions (UDF) were utilized for running the simulation. These
UDFs were specifically developed to handle the complex interactions between the laser
and the powder material, accounting for phase changes, thermal gradients, and fluid flow
within the melt pool. The simulation aimed to replicate the real-world conditions of the
LPBF process as closely as possible.

The simulation was successful, producing high-resolution images that clearly show the
formation and evolution of keyholes and pores in the Al-6061 alloy. These images are
shown in Figure 2, highlighting critical stages in the process. Additionally, the full
simulation can be viewed in the accompanying video, which provides a dynamic
visualization of the entire process, including temperature distribution and melt pool
dynamics.

For the next step, the Ti-6Al-4V alloy was used. The properties of Ti-6Al-4V, which
include its higher melting point and different thermal conductivity compared to Al-6061,
are also listed in Table 1. These differences necessitate adjustments in the simulation
parameters to accurately capture the behavior of Ti-6Al-4V under laser exposure.

During the simulation of Ti-6Al-4V, an issue arose with the UDF files. This issue affected
the accuracy of the temperature distribution and melt pool formation, leading to
discrepancies in the expected results. The troubleshooting of this issue is currently
underway. Ensuring the correctness of the UDF is critical for obtaining reliable
simulation results for Ti-6Al-4V.

This part of the procedure is vital for collecting accurate and diverse datasets that will be
used to train the deep-learning model. The successful completion of simulations for both
Al-6061 and Ti-6Al-4V will provide a robust foundation for the subsequent steps in the
research.

Table 1: Summary of the material property
Property Ti-6Al-4V Al - 6061

Solid density (kg/m3) 4420 2765-0.201T
Liquid Density (kg/m3) 3920 2670-0.28T
Solidus Temperature (K) 1877 873
Liquidus Temperature (K) 1933 915
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Solid Specific Heat Capacity
(J.kg-1K-1)

452.72+0.1734T 0.7067+0.0006T- (1 × 10-7 )T2

Liquid Specific Heat Capacity
(J.kg-1K-1)

830 1170

Solid Thermal Conductivity
(W.m-1K-1)

1.3097+0.0136T 90

Liquid Thermal Conductivity
(W.m-1K-1)

33.4 66.5

Latent Heat of Fusion
(kJ.kg-1K-1)

286 380

Dynamic Viscosity (Pa.s) 2.66× 10-3 1.00× 10-3

Thermal Expansion (1/K) 80 × 10-5

Surface Tension (N.m-1) 1.8 1.8
Marangoni Coefficient

(N.m-1K-1)
-2.6 x 10-4 0

Processing parameters for
simulations
Ti6Al4V

Beam radius 0.000025 0.0000044
Absorption, A 0.27
Power, P (W) 170 416

Scanning speed, v (m/s) 0.5 0.6
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Figure 2: Pores formation within the molten pool at different timesteps

Part - II - Training CNN for prediction of pore formation in the
keyhole

To achieve the final objective of predicting pore formation in the keyholes of the Laser
Powder Bed Fusion (LPBF) process, a deep learning model needs to be trained. The
initial step in this training involves the detection of keyhole formation in the molten pool.
Detecting keyholes accurately is crucial as they are precursors to pore formation and
provide critical information about the conditions leading to defects.

Keyhole Detection using YOLOv8

For keyhole detection, a You Only Look Once (YOLOv8) model was employed. This
model was chosen for its high speed and accuracy in object detection tasks. The images
used for training the YOLOv8 model were collected from experimental LPBF processes
conducted at Northwestern University. These images capture various stages of the LPBF
process, highlighting the formation and evolution of keyholes.

The collected images underwent a rigorous annotation process to ensure they were
training-ready for the YOLOv8 model. Annotation involved labeling keyholes in the
images, which provided the model with the necessary data to learn and detect keyholes
effectively. Once trained, the YOLOv8 model demonstrated the ability to detect keyholes
with a confidence range of 40-60%. An example of a detected keyhole with 44%
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confidence is shown in Figure 3. This level of confidence indicates the model's initial
success in identifying keyholes, though there is room for improvement.

Figure 3: Image of a detected keyhole in the molten pool

Integration with CNN for Pore Formation Prediction

Following the successful detection of keyholes, the next step involves integrating the
image data generated from the Ti-6Al-4V simulations with a Convolutional Neural
Network (CNN). The CNN model will be trained to predict pore formation in the
keyholes, leveraging the keyhole detection data as a foundational input. This integration
is crucial as it allows the model to build on the detected keyholes to predict subsequent
pore formation events.

The training process for the CNN will involve several stages:

1. Data Preprocessing: The simulation images from the Ti-6Al-4V alloy will be
preprocessed to ensure compatibility with the CNN architecture. This includes
normalization, augmentation, and splitting into training and validation sets.

2. Model Training: The CNN will be trained using the preprocessed images. The
training will focus on optimizing the network's parameters to maximize its
predictive accuracy. The model's performance will be evaluated based on metrics
such as accuracy, precision, recall, and F1 score.

3. Validation: The trained CNN model will be validated using a separate set of
images to assess its ability to generalize to new, unseen data. This step is critical to
ensure the model's robustness and reliability in real-world applications.
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Enhancing Accuracy with Physics-Informed Neural Networks (PINNs)

To further enhance the accuracy and timing of the predictions, a Physics-Informed Neural
Network (PINN) will be utilized. The PINN incorporates a physics-based loss function,
which leverages the underlying physical principles of the LPBF process. This integration
of domain-specific knowledge allows the model to make more accurate and reliable
predictions by adhering to the known physical laws governing keyhole and pore
formation.

The PINN's physics-based loss function will be designed to minimize discrepancies
between the predicted outcomes and the expected physical behavior of the LPBF process.
This approach not only improves prediction accuracy but also ensures that the model's
outputs are physically plausible and consistent with the observed phenomena.

7


